Evolution and approximation in brittle fracture

Thermal dipping experiment Yuse-Sano 93

Bourdin08

Evolution and approximation in brittle fracture Multi-cracking Bourdin 06

Evolution and approximation in brittle fracture Multi-cracking Bourdin 06

preset crack path $\hat{\Gamma}$

preset crack path $\hat{\Gamma}$ crack of length I


```
preset crack path \hat{\Gamma} crack of length I E(t; u; I) := \int_{\Omega \setminus \Gamma(I)} W(\nabla \cdot) dx - \mathcal{F}(t, \cdot) elastic \nearrow work \uparrow of loads energy u = g(t) on \partial \Omega \setminus \Gamma(I)
```


preset crack path
$$\hat{\Gamma}$$
 crack of length I $E(t; u; I) := \int_{\Omega \setminus \Gamma(I)} W(\nabla \cdot) dx - \mathcal{F}(t, \cdot)$ elastic \nearrow work \uparrow of loads energy $u = g(t)$ on $\partial \Omega \setminus \Gamma(I)$

Quasistatic \equiv elastic equilibrium at time $t \Rightarrow$

$$\mathcal{P}(t,l) := E(u(t,l),l) = \min_{u=k,a} E$$

preset crack path
$$\hat{\Gamma}$$
 crack of length I $E(t; u; I) := \int_{\Omega \setminus \Gamma(I)} W(\nabla \cdot) dx - \mathcal{F}(t, \cdot)$ elastic \nearrow work \uparrow of loads energy $u = g(t)$ on $\partial \Omega \setminus \Gamma(I)$

Quasistatic \equiv elastic equilibrium at time $t \Rightarrow$

$$\mathcal{P}(t,I) := E(u(t,I),I) = \min_{u \text{ k.a. }} E$$

Energy release rate: $G(t, I) := -\partial P/\partial I(t, I)$

Griffith
$$\Rightarrow \frac{dl}{dt}(t) \ge 0$$
, $G(t, l(t)) \le k$, $(G(t, l(t)) - k)\frac{dl}{dt}(t) = 0$

Problems

- crack path must be preset: how does a crack kink?
- initiation generically impossible:
- ullet \mathcal{P} concave in $I \Rightarrow \text{jump in crack growth: brutal growth}$

F-Marigo 98

$$\mathcal{E}(t; u; I) := \int_{\Omega \setminus \Gamma(I)} W(\nabla u) dx + kI - \mathcal{F}(t, u)$$

F-Marigo 98

$$\mathcal{E}(t; u; l) := \int_{\Omega \setminus \Gamma(l)} W(\nabla u) dx + kl - \mathcal{F}(t, u)$$

- Griffith's Model is equivalent to:
 - Unilateral stationarity: 1-parameter family of variations

$$I(t,\varepsilon) = I(t) + \varepsilon \hat{I}, \quad u(t,\varepsilon,I) = u(t,I) + \varepsilon v(t,I)$$

$$\Rightarrow \frac{d}{d\varepsilon} \mathcal{E}(t, u(t,\varepsilon,I(t,\varepsilon)), I(t,\varepsilon)) \Big|_{\varepsilon=0} \ge 0$$

 \approx a necessary first order condition for minimality

F-Marigo 98

$$\mathcal{E}(t; u; l) := \int_{\Omega \setminus \Gamma(l)} W(\nabla u) dx + kl - \mathcal{F}(t, u)$$

- Griffith's Model is equivalent to:
 - ▶ Unilateral stationarity: 1-parameter family of variations $I(t,\varepsilon) = I(t) + \varepsilon \hat{I}, \quad u(t,\varepsilon,I) = u(t,I) + \varepsilon v(t,I)$

$$\Rightarrow \frac{d}{d\varepsilon}\mathcal{E}(t,u(t,\varepsilon,l(t,\varepsilon)),l(t,\varepsilon))\Big|_{\varepsilon=0}\geq 0$$

pprox a necessary first order condition for minimality

 $ightharpoonup I(t) \nearrow \text{ with } t$

F-Marigo 98

$$\mathcal{E}(t; u; l) := \int_{\Omega \setminus \Gamma(l)} W(\nabla u) dx + kl - \mathcal{F}(t, u)$$

- Griffith's Model is equivalent to:
 - ▶ Unilateral stationarity: 1-parameter family of variations $I(t,\varepsilon) = I(t) + \varepsilon \hat{I}, \quad u(t,\varepsilon,I) = u(t,I) + \varepsilon v(t,I)$ $\Rightarrow \frac{d}{d\varepsilon} \mathcal{E}(t,u(t,\varepsilon,I(t,\varepsilon)),I(t,\varepsilon))\Big|_{\varepsilon=0} \geq 0$

pprox a necessary first order condition for minimality

- \blacktriangleright $I(t) \nearrow$ with t
- Energy balance:

$$\frac{d}{dt}\mathcal{E}(t; u(t), I(t)) = \int_{\partial\Omega\backslash\Gamma(I(t))} DW(\nabla u(t)) n \cdot \dot{g}(t) dS - \dot{\mathcal{F}}(t, u(t))$$

$$= \int_{\Omega\backslash\Gamma(I(t))} DW(\nabla u(t)) \cdot \nabla \dot{g}(t) dS - \dot{\mathcal{F}}(t, u(t))$$

• Replace unilateral stationarity by global minimality

• Replace unilateral stationarity by global minimality

Expand test cracks

• Global Stability:

$$\min_{u,\Gamma} \underbrace{\mathcal{E}(t,u,\Gamma)}_{\Omega \backslash \Gamma} := \int_{\Omega \backslash \Gamma} W(\nabla u) \, dx + k \mathcal{H}^{N-1}(\Gamma) - \mathcal{F}(t,u)$$

$$\equiv g(t) \text{ on } \partial\Omega \backslash \Gamma \quad \left\{ \begin{array}{c} \Gamma \subset \overline{\Omega} \\ \Gamma \supset \cup_{s < t} \Gamma(s) \end{array} \right.$$

• Replace unilateral stationarity by global minimality

Expand test cracks

1

• Global Stability:

$$\min_{\substack{u,\Gamma \\ \uparrow}} \mathcal{E}(t,u,\Gamma) := \int_{\Omega \setminus \Gamma} W(\nabla u) \, dx + k \mathcal{H}^{N-1}(\Gamma) - \mathcal{F}(t,u)$$

$$\equiv g(t) \text{ on } \partial\Omega \setminus \Gamma \quad \left\{ \begin{array}{c} \Gamma \subset \overline{\Omega} \\ \Gamma \supset \cup_{s < t} \Gamma(s) \end{array} \right.$$

Looks like Mumford-Shah 89: for g datum,

$$\min_{u,\Gamma} \left\{ 1/2 \int_{\Omega \setminus \Gamma} |\nabla u|^2 dx + k \mathcal{H}^{N-1}(\Gamma) + \int_{\Omega} |u - g|^2 dx \right\}$$

• Replace unilateral stationarity by global minimality

Expand test cracks

• Global Stability:

$$\min_{u,\Gamma} \mathcal{E}(t,u,\Gamma) := \int_{\Omega \setminus \Gamma} W(\nabla u) \, dx + k \mathcal{H}^{N-1}(\Gamma) - \mathcal{F}(t,u)$$

$$\equiv g(t) \text{ on } \partial\Omega \setminus \Gamma \quad \left\{ \begin{array}{l} \Gamma \subset \overline{\Omega} \\ \Gamma \supset \cup_{s < t} \Gamma(s) \end{array} \right.$$

• Energy balance

• Replace unilateral stationarity by global minimality

Expand test cracks

1

• Global Stability:

$$\min_{u,\Gamma} \underbrace{\mathcal{E}(t,u,\Gamma)}_{\Omega \backslash \Gamma} := \int_{\Omega \backslash \Gamma} W(\nabla u) \, dx + k \mathcal{H}^{N-1}(\Gamma) - \mathcal{F}(t,u)$$

$$\equiv g(t) \text{ on } \partial \Omega \backslash \Gamma \quad \left\{ \begin{array}{c} \Gamma \subset \overline{\Omega} \\ \Gamma \supset \cup_{s < t} \Gamma(s) \end{array} \right.$$

• Energy balance

.... Immediate consequence: In a linear setting $(W(F) = \mu/2|F|^2)$ always initiation in finite time!

Time discretization

$$I_n = \{0 = t_0^n,, T = t_{k(n)}^n\}, \nearrow I_{\infty} \text{ dense in } [0, T]$$

• u_i^n, Γ_i^n minimizes $\int_{\Omega \setminus \Gamma} W(\nabla u) dx + k \mathcal{H}^{N-1}(\Gamma) - \mathcal{F}(t_i^n, u)$ with

$$\left\{ \begin{array}{l} \Gamma_{i-1}^n \subset \Gamma \subset \overline{\Omega} \\ u = g_i^n \text{ on } \partial\Omega \setminus \Gamma \end{array} \right.$$

Time discretization

$$I_n = \{0 = t_0^n,, T = t_{k(n)}^n\}, \nearrow I_{\infty} \text{ dense in } [0, T]$$

• u_i^n, Γ_i^n minimizes $\int_{\Omega \setminus \Gamma} W(\nabla u) dx + k \mathcal{H}^{N-1}(\Gamma) - \mathcal{F}(t_i^n, u)$ with

$$\left\{ \begin{array}{l} \Gamma_{i-1}^n \subset \Gamma \subset \overline{\Omega} \\ u = g_i^n \text{ on } \partial\Omega \setminus \Gamma \end{array} \right.$$

$$\bullet \begin{cases} u^n(t) := u_i^n \\ \Gamma^n(t) := \Gamma_i^n \end{cases} \text{ on } [t_i^n, t_{i+1}^n)$$

$$n \nearrow \infty$$
 ?

Time discretization

$$I_n = \{0 = t_0^n,, T = t_{k(n)}^n\}, \nearrow I_{\infty} \text{ dense in } [0, T]$$

• u_i^n, Γ_i^n minimizes $\int_{\Omega \setminus \Gamma} W(\nabla u) dx + k \mathcal{H}^{N-1}(\Gamma) - \mathcal{F}(t_i^n, u)$ with

$$\left\{ \begin{array}{l} \Gamma_{i-1}^n \subset \Gamma \subset \overline{\Omega} \\ u = g_i^n \text{ on } \partial\Omega \setminus \Gamma \end{array} \right.$$

• Mumford-Shah 89 + De Giorgi-Carriero-Leaci 89 \Rightarrow Discrete weak formulation:

$$u_i^n$$
 minimizes $\int_{\Omega} W(\nabla u) dx + k \mathcal{H}^{N-1}(S(u) \setminus \bigcup_{j < i} S(u_j^n)) - \mathcal{F}(t_i^n, u)$ for all $u \in SBV(\mathbb{R}^N)$ with $u \equiv g_i^n$ outside $\overline{\Omega}$

The evolution

Thm (Dal Maso-Toader 02, F-Larsen 03, Dal Maso-F-Toader 05, Dal Maso ... 09):

- W C¹ with (or without) p-growth, p-coercive, convex or quasiconvex;
- $\triangleright \Omega$ nice;
- ▶ appropriate loads $\mathcal{F}(t, v)$ and displacements g(t).

Then $\exists \Gamma(t) \nearrow, u(t) \in SBV, \ \nabla u \in L^p \ \text{st}$

- u(t) minimizes $\int_{\Omega} W(\nabla v) dx + k \mathcal{H}^{N-1}(S(v) \setminus \Gamma(t)) \mathcal{F}(t, v)$ with $u(t) \equiv g(t)$ on $\mathbb{R}^N \setminus \overline{\Omega}$
- $S(u(t)) \subset \Gamma(t)$
- $\mathcal{E}(t) := \int_{\Omega} W(\nabla u(t)) dx + k \mathcal{H}^{N-1}(\Gamma(t)) \mathcal{F}(t, u(t))$ satisfies

$$rac{d}{dt}\mathcal{E}(t) = \int_{\Omega} DW(
abla u(t)) \cdot
abla \dot{g}(t) \ dx + ext{ terms coming from } \mathcal{F} \ \Box$$

The evolution

Thm (Dal Maso-Toader 02, F-Larsen 03, Dal Maso-F-Toader 05, Dal Maso ... 09):

- W C¹ with (or without) p-growth, p-coercive, convex or quasiconvex;
- Ω nice ;
- ▶ appropriate loads $\mathcal{F}(t, v)$ and displacements g(t).

Then $\exists \Gamma(t) \nearrow, u(t) \in SBV, \ \nabla u \in L^p \ st$

- u(t) minimizes $\int_{\Omega} W(\nabla v) dx + k \mathcal{H}^{N-1}(S(v) \setminus \Gamma(t)) \mathcal{F}(t, v)$ with $u(t) \equiv g(t)$ on $\mathbb{R}^N \setminus \overline{\Omega}$
- $S(u(t)) \subset \Gamma(t)$
- $\mathcal{E}(t) := \int_{\Omega} W(\nabla u(t)) dx + k \mathcal{H}^{N-1}(\Gamma(t)) \mathcal{F}(t, u(t))$ satisfies

$$rac{d}{dt}\mathcal{E}(t) = \int_{\Omega} DW(
abla u(t)) \cdot
abla \dot{g}(t) \; dx + \; ext{terms coming from } \mathcal{F} \; \Box$$

No a priori measurability property of u with respect to t.....

The evolution

Thm (Dal Maso-Toader 02, F-Larsen 03, Dal Maso-F-Toader 05, Dal Maso ... 09):

- ▶ W C¹ with (or without) p-growth, p-coercive, convex or quasiconvex;
- Ω nice ;
- ▶ appropriate loads $\mathcal{F}(t, v)$ and displacements g(t).

Then
$$\exists \Gamma(t) \nearrow, u(t) \in SBV, \ \nabla u \in L^p \ st$$

- u(t) minimizes $\int_{\Omega} W(\nabla v) dx + k \mathcal{H}^{N-1}(S(v) \setminus \Gamma(t)) \mathcal{F}(t, v)$ with $u(t) \equiv g(t)$ on $\mathbb{R}^N \setminus \overline{\Omega}$
- $S(u(t)) \subset \Gamma(t)$
- $\mathcal{E}(t) := \int_{\Omega} W(\nabla u(t)) dx + k \mathcal{H}^{N-1}(\Gamma(t)) \mathcal{F}(t, u(t))$ satisfies

$$rac{d}{dt}\mathcal{E}(t) = \int_{\Omega} DW(
abla u(t)) \cdot
abla \dot{g}(t) \ dx + \ ext{terms coming from } \mathcal{F} \ \Box$$

No a priori measurability property of u with respect to t.....

• Does not work in linearized elasticity !!!! no co-area formula: however results in 2d for connected cracks by Chambolle 03

• Global minimization does not agree with dead forces:

$$\inf_{u} \left\{ \int_{\Omega} W(\nabla u) dx + k \mathcal{H}^{N-1}(S(u)) - \int_{\Omega} f \cdot u dx \right\} = -\infty$$

• Global minimization does not agree with dead forces:

$$\inf_{u} \left\{ \int_{\Omega} W(\nabla u) dx + k \mathcal{H}^{N-1}(S(u)) - \int_{\Omega} f \cdot u dx \right\} = -\infty$$

Replace global by local Which??? small add-length, L^p

• Global minimization does not agree with dead forces:

$$\inf_{u} \left\{ \int_{\Omega} W(\nabla u) dx + k \mathcal{H}^{N-1}(S(u)) - \int_{\Omega} f \cdot u dx \right\} = -\infty$$

Replace global by local Which??? small add-length, L^p

• Not enough: Chambolle-Giacomini-Ponsiglione 08: no initiation

2d, hard device, x point of weak singularity "connected cracks" iff, for some $\alpha>1$ W strictly convex, \mathcal{C}^1 , \Rightarrow $\limsup_{r\downarrow 0} \frac{1}{r^\alpha} \int_{B(x,r)} |\nabla \psi|^p dx \leq C$. p-growth, ψ elastic sol.

Thm: If all points in $\overline{\Omega}$ are points of weak singularity (with a uniform bound), then $\exists I^*$ s.t. if $\mathcal{H}^{N-1}(\Gamma) < I^*$, then

$$\int_{\Omega} W(\nabla \psi) dx < \int_{\Omega} W(\nabla u^{\Gamma}) dx + k \mathcal{H}^{N-1}(\Gamma) \quad \Box$$
† solution with Γ as crack

• Global minimization does not agree with dead forces:

$$\inf_{u} \left\{ \int_{\Omega} W(\nabla u) dx + k \mathcal{H}^{N-1}(S(u)) - \int_{\Omega} f \cdot u dx \right\} = -\infty$$

Replace global by local Which??? small add-length, L^p

• Not enough: Chambolle-Giacomini-Ponsiglione 08: no initiation

2d, hard device,
$$x$$
 point of weak singularity "connected cracks" iff, for some $\alpha>1$ W strictly convex, \mathcal{C}^1 , \Rightarrow $\limsup_{r\downarrow 0} \frac{1}{r^\alpha} \int_{B(x,r)} |\nabla \psi|^p dx \leq C$. p -growth, ψ elastic sol.

Thm: If all points in $\overline{\Omega}$ are points of weak singularity (with a uniform bound), then $\exists I^*$ s.t. if $\mathcal{H}^{N-1}(\Gamma) < I^*$, then

$$\int_{\Omega} W(\nabla \psi) dx < \int_{\Omega} W(\nabla u^{\Gamma}) dx + k \mathcal{H}^{N-1}(\Gamma) \quad \Box$$

$$\uparrow \text{ solution with } \Gamma \text{ as crack}$$

 \bullet ψ is local minimizer of the energy in any topology finer than L^1

• Global minimization does not agree with dead forces:

$$\inf_{u} \left\{ \int_{\Omega} W(\nabla u) dx + k \mathcal{H}^{N-1}(S(u)) - \int_{\Omega} f \cdot u dx \right\} = -\infty$$

Replace global by local Which??? small add-length, L^p

- Not enough: Chambolle-Giacomini-Ponsiglione 08: no initiation
- ullet Does not cure dead forces: small crack Γ will kill potential energy.

Possible sol.: Non-interpenetration

• Global minimization does not agree with dead forces:

$$\inf_{u} \left\{ \int_{\Omega} W(\nabla u) dx + k \mathcal{H}^{N-1}(S(u)) - \int_{\Omega} f \cdot u dx \right\} = -\infty$$

Replace global by local Which??? small add-length, L^p

- Not enough: Chambolle-Giacomini-Ponsiglione 08: no initiation
- Does not cure dead forces: small crack Γ will kill potential energy.

Possible sol.: Nany-interpenetration

Kinking - the classics

• crack tip singularity:

$$u = \sqrt{r} \sum_{i=1,2} \{ K_i(t, l+l', \theta) \varphi_i \} + \hat{u}$$

with \hat{u} smoother; φ_i universal fcts.

 $=: u_{00}(ext{defined on all of } \mathbb{R}^2) + \hat{u}$

ullet $K_{1(2)}=0$ if $\sigmaec{e}_2\parallelec{e}_{1(2)}$ near tip

Kinking - the classics

crack tip singularity:

$$u = \sqrt{r} \sum_{i=1,2} \{ K_i(t, l+l', \theta) \varphi_i \} + \hat{u}$$

with \hat{u} smoother; φ_i universal fcts.

 $=: u_{00}(\text{defined on all of }\mathbb{R}^2) + \hat{u}$

ullet $K_{1(2)}=0$ if $\sigma ec{e}_2 \parallel ec{e}_{1(2)}$ near tip

• shared by all:

G(t, l) = k at time t when crack kinks \approx energy conservation

- problem: what determines θ ?
- 2 schools:

$$\theta$$
 maximizes $G(t, l, \theta)$ vs. $0 = K_2^*(t, l, \theta) := \lim_{l' \searrow 0} K_2(t, l+l', \theta)$.

Kinking - the classics

crack tip singularity:

$$u = \sqrt{r} \sum_{i=1,2} \{ K_i(t, l+l', \theta) \varphi_i \} + \hat{u}$$

with \hat{u} smoother; φ_i universal fcts.

- =: u_{00} (defined on all of \mathbb{R}^2) + \hat{u}
- ullet $K_{1(2)}=0$ if $\sigmaec{e}_2\parallelec{e}_{1(2)}$ near tip

• shared by all:

G(t, l) = k at time t when crack kinks \approx energy conservation

- problem: what determines θ ?
- 2 schools:

$$\theta$$
 maximizes $G(t, l, \theta)$ vs. $0 = K_2^*(t, l, \theta) := \lim_{l \to \infty} K_2(t, l + l', \theta)$.

• Amestoy-Leblond 92: criteria do not coincide!

- framework:
 - ▶ pre-crack $\gamma_i \approx$ straight near crack tip;
 - ▶ connected add-crack: $\Gamma_{\varepsilon} \stackrel{\text{Hausdorff}}{\longrightarrow} \Gamma$;
 - boundary displacement u₀;
 - isotropic linear elasticity;
 - ▶ soln. to eqm. with γ_i : u_0

- framework:
 - ▶ pre-crack $\gamma_i \approx$ straight near crack tip;
 - ▶ connected add-crack: $\Gamma_{\varepsilon} \stackrel{\text{Hausdorff}}{\longrightarrow} \Gamma$;
 - boundary displacement u₀;
 - isotropic linear elasticity;
 - ▶ soln. to eqm. with γ_i : u_0
- Blow up Thm: $1/\varepsilon\{\int_{\Omega\setminus(\gamma_i\cup\varepsilon\Gamma_\varepsilon)}\mathcal{C}e(u^{\varepsilon\Gamma_\varepsilon})\cdot e(u^{\varepsilon\Gamma_\varepsilon})dx \int_{\Omega\setminus\gamma_i}\mathcal{C}e(u_0)\cdot e(u_0)dx\}$ \equiv energy release slope associated with add-crack $\varepsilon\Gamma_\varepsilon$

- framework:
 - pre-crack $\gamma_i \approx$ straight near crack tip;
 - ▶ connected add-crack: $\Gamma_{\varepsilon} \stackrel{\text{Hausdorff}}{\longrightarrow} \Gamma$;
 - boundary displacement u₀;
 - isotropic linear elasticity;
 - ▶ soln. to eqm. with γ_i : u_0
- Blow up Thm: $\lim_{\varepsilon} 1/\varepsilon \{ \int_{\Omega \setminus (\gamma_i \cup \varepsilon \Gamma_{\varepsilon})} Ce(u^{\varepsilon \Gamma_{\varepsilon}}) \cdot e(u^{\varepsilon \Gamma_{\varepsilon}}) dx e(u^{\varepsilon \Gamma_{\varepsilon}}) dx \}$

 $\int_{\Omega\setminus\gamma_i}\mathcal{C}e(u_0)\cdot e(u_0)dx\}=\mathcal{F}^\Gamma:=$ elast. energy release due to add-crack Γ starting from tip of straight half-line in dir. of pre-crack in \mathbb{R}^2

- framework:
 - ▶ pre-crack $\gamma_i \approx$ straight near crack tip;
 - ▶ connected add-crack: $\Gamma_{\varepsilon} \stackrel{\text{Hausdorff}}{\longrightarrow} \Gamma$;
 - boundary displacement u₀;
 - isotropic linear elasticity;
 - **>** soln. to eqm. with γ_i : u_0
- Blow up Thm: $\lim_{\varepsilon} 1/\varepsilon \{ \int_{\Omega \setminus (\gamma_i \cup \varepsilon \Gamma_{\varepsilon})} \mathcal{C}e(u^{\varepsilon \Gamma_{\varepsilon}}) \cdot e(u^{\varepsilon \Gamma_{\varepsilon}}) dx \int_{\Omega \setminus \gamma_i} \mathcal{C}e(u_0) \cdot e(u_0) dx \} = \mathcal{F}^{\Gamma} :=$

- framework:
 - ▶ pre-crack $\gamma_i \approx$ straight near crack tip;
 - ▶ connected add-crack: $\Gamma_{\varepsilon} \stackrel{\text{Hausdorff}}{\longrightarrow} \Gamma$;
 - boundary displacement u₀;
 - isotropic linear elasticity;
 - ▶ soln. to eqm. with γ_i : u_0
- Blow up Thm: $\lim_{\varepsilon} 1/\varepsilon \{ \int_{\Omega \setminus (\gamma_i \cup \varepsilon \Gamma_{\varepsilon})} \mathcal{C}e(u^{\varepsilon \Gamma_{\varepsilon}}) \cdot e(u^{\varepsilon \Gamma_{\varepsilon}}) dx \int_{\Omega \setminus \gamma_i} \mathcal{C}e(u_0) \cdot e(u_0) dx \} = \mathcal{F}^{\Gamma} :=$ elast. energy release due to add-crack Γ starting from tip of straight half-line in dir. of pre-crack in \mathbb{R}^2

$$:= \min\{1/2 \int_{\mathbb{R}^2} \mathcal{C}e(w) \cdot e(w) dx + \int_{B(0,r)} \mathcal{C}e(u_{00}) \cdot e(w) dx - \int_{\partial B(0,r)} \mathcal{C}e(u_{00}) \cdot (w \otimes \nu) d\mathcal{H}_1 : w \in H^1_{loc}(\mathbb{R}^2 \setminus (\mathbb{R}^-\vec{e}_1 \cup \Gamma)\} \square$$

↑ avoids dealing with infinite energies

- framework:
 - ▶ pre-crack $\gamma_i \approx$ straight near crack tip;
 - ▶ connected add-crack: $\Gamma_{\varepsilon} \stackrel{\text{Hausdorff}}{\longrightarrow} \Gamma$;
 - **b** boundary displacement u_0 ;
 - isotropic linear elasticity;
 - ▶ soln. to eqm. with γ_i : u_0
- Blow up Thm: $\lim_{\varepsilon} 1/\varepsilon \{ \int_{\Omega \setminus (\gamma_i \cup \varepsilon \Gamma_{\varepsilon})} \mathcal{C}e(u^{\varepsilon \Gamma_{\varepsilon}}) \cdot e(u^{\varepsilon \Gamma_{\varepsilon}}) dx \int_{\Omega \setminus \gamma_i} \mathcal{C}e(u_0) \cdot e(u_0) dx \} = \mathcal{F}^{\Gamma} :=$ elast. energy release due to add-crack Γ starting from tip of straight half-line in dir. of pre-crack in \mathbb{R}^2

$$:= \min\{1/2 \int_{\mathbb{R}^2} \mathcal{C}e(w) \cdot e(w) dx + \int_{B(0,r)} \mathcal{C}e(u_{00}) \cdot e(w) dx - \int_{\partial B(0,r)} \mathcal{C}e(u_{00}) \cdot (w \otimes \nu) d\mathcal{H}_1 : w \in H^1_{loc}(\mathbb{R}^2 \setminus (\mathbb{R}^-\vec{e}_1 \cup \Gamma))\} \square$$

• Rk.: $\Gamma_{\varepsilon} = \Gamma(\varepsilon)/\varepsilon$ with $\Gamma(\varepsilon) \nearrow$ with ε , $\mathcal{H}_1(\Gamma(\varepsilon)) = \varepsilon$ and $\Gamma(\varepsilon)$ has density 1/2 at 0, then $\Gamma_{\varepsilon} \xrightarrow{\text{Hausdorff}}$ unit length line-segment.

- framework:
 - ▶ pre-crack $\gamma_i \approx$ straight near crack tip;
 - ▶ connected add-crack: $\Gamma_{\varepsilon} \stackrel{\text{Hausdorff}}{\longrightarrow} \Gamma$;
 - boundary displacement u₀;
 - isotropic linear elasticity;
 - ▶ soln. to eqm. with γ_i : u_0
- Blow up Thm on \mathbb{R}^2 :

Revisiting energy release rates II III

• Thm: If $K_2 \neq 0$, then $\min_{\Gamma;\mathcal{H}^1(\Gamma)=1} \mathcal{F}^\Gamma$ is not attained for Γ unit-length line segments \Rightarrow maximal energy release> energy release rate for add-cracks with density 1/2 \square Theorem proved iff $\theta'=0$ is not a maximum of en. release among all segments [O,N] originating from O, assuming that [O,M] attains the max. energy release.

Revisiting energy release rates III

• $F(\zeta)$ analytic universal matrix: expansion determined for small ζ 's in Amestoy-Leblond 92

$$\theta_{max} \neq 0$$
 if $F_{21}(\zeta)F_{12}'(\zeta) - F_{22}(\zeta)F_{11}'(\zeta) \neq 0, \forall \zeta$ \Downarrow

Among small ζ 's, result is true.

• Conjecture numerically satisfied for large angles.

- Assumptions of "generalized" classical kinking: existence of smooth evolution:
 - Γ has density 1/2 at crack tip;
 - $ightharpoonup \Gamma(t) \subset \Gamma;$
 - ightharpoonup $\Gamma(0) = \emptyset$;
 - $ightharpoonup \Gamma(t)$ strictly and continuously in length;
- \Rightarrow energy release rate at 0 = k

- Assumptions of "generalized" classical kinking: existence of smooth evolution:
 - Γ has density 1/2 at crack tip;
 - ightharpoonup $\Gamma(t) \subset \Gamma$;
 - ightharpoonup $\Gamma(0) = \emptyset$;
 - $ightharpoonup \Gamma(t)$ strictly and continuously in length;
- \Rightarrow energy release rate at 0 = k
- ullet Assume meta-stability: at $t=0, \gamma_i$ locally minimizes total energy/length \Rightarrow maximal energy release slope $\leq k$

- Assumptions of "generalized" classical kinking: existence of smooth evolution:
 - Γ has density 1/2 at crack tip;
 - **▶** Γ(*t*) ⊂ Γ;
 - ightharpoonup $\Gamma(0) = \emptyset$;
 - $ightharpoonup \Gamma(t)$ strictly and continuously in length;
- \Rightarrow energy release rate at 0 = k
- ullet Assume meta-stability: at $t=0, \gamma_i$ locally minimizes total energy/length \Rightarrow maximal energy release slope $\le k$
- But $\stackrel{\mathsf{Thm}+}{\Longrightarrow} \stackrel{\mathsf{Blow}}{\Longrightarrow} \stackrel{\mathsf{up}}{\Longrightarrow} \mathsf{nergy}$ release rate at 0 along path $\Gamma(t) < k!$

• Cor: No time continuous kinking onto add-cracks of density 1/2

- Assumptions of "generalized" classical kinking: existence of smooth evolution:
 - Γ has density 1/2 at crack tip;
 - **▶** Γ(*t*) ⊂ Γ;
 - ightharpoonup $\Gamma(0) = \emptyset$;
 - ightharpoonup $\Gamma(t)$ strictly and continuously in length;
- \Rightarrow energy release rate at 0 = k
- ullet Assume meta-stability: at $t=0, \gamma_i$ locally minimizes total energy/length \Rightarrow maximal energy release slope $\leq k$
- But $\stackrel{\mathsf{Thm}+}{\Longrightarrow} \stackrel{\mathsf{Blow}}{\Longrightarrow} \stackrel{\mathsf{up}}{\Longrightarrow} \mathsf{nergy}$ release rate at 0 along path $\Gamma(t) < k!$

- ullet Cor: No time continuous kinking onto add-cracks of density 1/2
- Either jump, or fork like pattern, or lack of connectedness!