Evolution and approximation in brittle fracture

Thermal dipping experiment Yuse-Sano 93

Bourdin08



Evolution and approximation in brittle fracture

Multi-cracking Bourdin 06

i

H

DA



Evolution and approximation in brittle fracture
Multi-cracking Bourdin 06



Brittle Fracture a la Griffith 20



Brittle Fracture a la Griffith 20

preset crack path I



Brittle Fracture a la Griffith 20

preset crack path I
crack of length /



Brittle Fracture a la Griffith 20

preset crack path I

crack of length /

E(t;u;l) =

fQ\r(/) W(V-)dx — F(t,-)

elastic / work T of loads
energy

u=g(t) on 9Q\ (/)



Brittle Fracture a la Griffith 20

preset crack path I

crack of length /

E(t;u;l) =

fQ\r(/) W(V-)dx — F(t,-)

elastic / work T of loads
energy

u=g(t) on 9Q\ (/)

Quasistatic = elastic equilibrium at time t =

P(t, 1) = E(u(t,/),]) = min E

u k..



Brittle Fracture a la Griffith 20

preset crack path I

crack of length /

E(t;u;l) =

fQ\r(/) W(V-)dx — F(t,-)

elastic /* work T of loads
energy

u=g(t) on 9Q\ (/)
Quasistatic = elastic equilibrium at time t =
P(t, 1) = E(u(t, 1), 1) = mli(n E

Energy release rate: G(t,/) := —0P/0I(t,])

Griffith = %(t) >0, G(t,1(t)) <k, (G(t,/(t)) — k)%(t) =0



Problems

e crack path must be preset: how does a crack kink?
e initiation generically impossible:

e P concave in /| = jump in crack growth: brutal growth
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Reformulate Griffith
F-Marigo 98

E(tul) = fQ\r(/) W(Vu)dx + kI — F(t,u)

e Griffith’s Model is equivalent to:
» Unilateral stationAarity: 1-parameter family of variations
I(t,e) = I(t)+el, u(t,el)=u(t])+ev(t)
= LE(tu(t e 1(8,9)). (8,2)|_ >0

~ a necessary first order condition for minimality
» I(t) / with t
» Energy balance:
FE(tu(t), (1) = faQ\r(/(t)) DW(Vu(t))n - g(t)dS — F(t, u(t))

= Jonrie) PW(Vu(t)) - VE(£)dS — (¢, u(t))



A variational model a la Mielke 02

e Replace unilateral stationarity by global minimality



A variational model a la Mielke 02

e Replace unilateral stationarity by global minimality

Expand test cracks

4
e Global Stability:
min &(t, u,T) == W (Vu) dx + kHNH(T) — F(t,u)

wl 7 N Jar

— rcQ
=g(t) on 0Q\ T { [ 5 Uscel(s)



A variational model a la Mielke 02

e Replace unilateral stationarity by global minimality

Expand test cracks

4
e Global Stability:
min &(t, u,T) == W (Vu) dx + kHNH(T) — F(t,u)

wl 7 N Jar

— rcQ
=g(t) on 0Q\ T { [ 5 Uscel(s)

Looks like Mumford-Shah 89: for g datum,

min 1/2/ yva2dx+kH""1(F)+/!u—glzdx
u,l Q\r Q
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A variational model a la Mielke 02

e Replace unilateral stationarity by global minimality

Expand test cracks

4
e Global Stability:

min %(t,<, M ::ﬁ\r W (Vu) dx + kHN7Y(T) — F(t, u)

=g(t) on 0Q\ T { F g 85<tr(5)
e Energy balance

... Immediate consequence: In a linear setting (W(F) = p/2|F|?)
always initiation in finite time!
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Time discretization

Ih={0=1¢t,....T= = t(m }, /"l dense in [0, T]
e u”, T minimizes fmr W(Vu)dx + kHN=1(T) — F(t7, u) with

rm,crcQ

u=g"on dQ\T
e Mumford-Shah 89 + De Giorgi-Carriero-Leaci 89 = Discrete weak
formulation:

uf minimizes [, W(Vu)dx + kHN"H(S(u) \ Uj<iS(u)) — F(tf, u)
for all u € SBV(RN) with u = g outside Q



The evolution

Thm (Dal Maso-Toader 02, F-Larsen 03, Dal Maso-F-Toader 05,
Dal Maso ... 09):

» W C! with (or without) p-growth, p-coercive, convex or
quasiconvex;
»  nice ;
> appropriate loads F(t, v) and displacements g(t).
Then 3r(t) /, u(t) € SBV, Vu e LP st
e u(t) minimizes [, W(Vv)dx + kHN1(S(v) \ T(t)) — F(t,v)
with u(t) = g(t) on RN\ Q
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The evolution

Thm (Dal Maso-Toader 02, F-Larsen 03, Dal Maso-F-Toader 05,
Dal Maso ... 09):

» W C! with (or without) p-growth, p-coercive, convex or
quasiconvex;
»  nice ;
> appropriate loads F(t, v) and displacements g(t).
Then 3r(t) /, u(t) € SBV, Vu e LP st
e u(t) minimizes [, W(Vv)dx + kHN1(S(v) \ T(t)) — F(t,v)
with u(t) = g(t) on RN\ Q

e S(u(t)) CTI(t)
o &(t) := Jo W(Vu(t))dx + kHN=Y(T(t)) — F(t, u(t)) satisfies

d
dtg( )= / DW(Vu(t)) - Vg(t) dx + terms coming from F O
Q
No a priori measurability property of u with respect to t.....

e Does not work in linearized elasticity !!!! no co-area formula:
however results in 2d for connected cracks by Chambolle 03
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2d, hard device, x point of weak singularity
"connected cracks” iff, for some o > 1
W strictly convex, C*, = lim sup,lor%fB(X r)vadxg C.

p-growth, v elastic sol.

Thm: If all points in Q are points of weak singularity (with a uniform
bound), then 3/* s.t. if HN=1(T) < I*, then

/Ww)dx< W(Vu")dx + kHNHT) O

T solut|on with I as crack

e 1) is local minimizer of the energy in any topology finer than L}
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Possible sol.: Non-interpenetration



The trouble with global minimality

e Global minimization does not agree with dead forces:

ir;f{/ﬂ W(vu)dx+kHN—1U(5(u)) —/Qf- udx} = —00

Replace global by local ........ Which??? small add-length, LP
e Not enough:Chambolle-Giacomini-Ponsiglione 08: no initiation

e Does not cure dead forces: small crack I" will kill potential energy.

Possible sol.: Nop/ifiteypengtarion
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u=/r Z {Ki(t, I+, 0)pi}+
i=1,2

with &I smoother; ; universal fcts.

=: ugp(defined on all of R2) + I

) K1(2) =0if oé | 51(2) near

tip
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length |

e shared by all:

G(t,!) = k at time t when crack kinks &~ energy conservation

e problem: what determines 67

e 2 schools:

6 maximizes G(t,/,0) vs. 0 =K3(t,/,0) :==limp~ oKo(t, /41, 0).

T

e Amestoy-Leblond 92: criteria do not coincide!
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e framework:

> pre-crack 7; & straight near crack tip;

Hausdorff
» connected add-crack: . —="" T

» boundary displacement wup;

» isotropic linear elasticity;

» soln. to eqm. with v;: ug
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e framework:

> pre-crack 7; & straight near crack tip;

Hausdorff
» connected add-crack: . —="" T

» boundary displacement wup;

» isotropic linear elasticity;

» soln. to eqm. with v;: ug
o Blow up Thm: lim:1/e{fo\ (,.er.) Ce(u™) - e(u™e)dx —
s, Celt) - e(un)dx} = FT =
elast. energy release due to add-crack [ starting from tip of straight half-
line in dir. of pre-crack in R?

=min{1/2 | Ce(w) - e(w)dx +/ Ce(ugo) - e(w)dx —
R2 B(0,r)
/ Ce(ugo) - (w @ v)dHy : w € HL (R?\ (R™& UT)}O
0B(0,r)

e Rk.: T, =T(e)/e with T'(e) /" with €, H1(I'(¢)) = ¢ and T'(g)

has density 1/2 at 0, then I, Hapsdorfl |\ iy length line-segment.



Revisiting energy release rates Chambolle-F-Marigo

e framework:

> pre-crack 7; & straight near crack tip;
Hausdorff
—

r.

» connected add-crack: I;

» boundary displacement wup;

» isotropic linear elasticity;

» soln. to eqm. with v;: ug
e Blow up Thm on R?:

straight half- [e]
line

straight half-line



Reuvisiting energy release rates |l

(KK = F@(KY K

/
e[M,N .‘f’:,. ) \ YK e

!
0

energy release

corresponding to

“half-line + [O, M], resp. [O, N]
[rwin 58,

Destuynder-Djaoua 81:

C((KI")? + (K3")?), resp. C((K{")* + (K3')?)
4
e Thm: If K2 # 0, then minr341 (=1 F' is not attained for I

unit-length line segments = maximal energy release> energy
release rate for add-cracks with density 1/2 O

Theorem proved iff / = 0 is not a maximum of en. release among all segments [O, N]

(KM K3y = F(B)(K,, Ka)

originating from O, assuming that [O, M] attains the max. energy release.



Revisiting energy release rates |1l

e F(¢) analytic universal matrix: expansion determined for small
('s in Amestoy-Leblond 92

Omax 7 0 if  F21(C)F12(C) — F22(Q)F11(C) # 0, ¢
Y
Among small (s, result is true.

e Conjecture numerically satisfied for large angles.
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Consequence of meta-stability + energy conservation

e Assumptions of “generalized” classical kinking: existence of
smooth evolution:

» [ has density 1/2 at crack tip;

» [(t)CT;

» (0) =0;

» [(t) / strictly and continuously in length;
= energy release rate at 0 = k
e Assume meta-stability: at t = 0,~; locally minimizes total
energy/length = maximal energy release slope < k

o But "X ™ energy release rate at 0 along path '(t) < k!

4

e Cor: No time continuous kinking onto add-cracks of density 1/2
|

e Either jump, or fork like pattern, or lack of connectedness!



